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Abstract

Solid–liquid separation by the process of continuous sedimentation in a clarifier–thickener unit, or settler, is difficult to model. Simplified
assumptions on the behaviour of the solids, the flows, the physical design of the settler, etc. still leave the fundamental process highly
non-linear. A fairly simple model consists of a one-dimensional settler, with a constant or varying cross-sectional area, in which an ideal
suspension of solids behaves according to the Kynch assumption (the settling velocity is a function of the local concentration only) and the
conservation of mass. At the bottom of the settler the concentration increases with depth as a result of, among other things, compression and
a converging cross-sectional area. It is important to understand fully the mathematical implications of the simplified assumptions before
investigating more complex models. In this paper it is demonstrated what impact a converging cross-sectional area has on the increase
in concentration at the bottom for incompressible suspensions (a consequence of Kynch’s assumption). This analysis leads to a natural
boundary condition at the bottom, which is a special case of a generalized entropy condition for the type of partial differential equation
under consideration. The mathematical problems concerning the boundary conditions at the top, bottom and inlet are resolved uniquely by
this generalized entropy condition. One aim of the paper is to describe and elucidate this condition by examples leaving out some technical
mathematical details. The construction of a unique solution, including the prediction of the outlet concentrations, is described by examples
in the case of a constant cross-sectional area. Comparisons with numerical solutions are also presented. © 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Continuous sedimentation, where gravity is the driving
force, is a commonly used solid–liquid separation pro-
cess in various industrial applications. It takes place in a
clarifier–thickener unit or settler, which has one inlet (some-
where in the middle) and two outlets (at the top and bottom).
For mathematical modelling purposes we consider ideal
settlers shown in Fig. 1. The concept of the ideal thickener
was introduced and analysed by Shannon and Tory [31].
The settlers are ideal in the sense that the concentration
distribution is influenced only by the conservation of mass
in one dimension, perhaps with a varying cross-sectional
area, together with a constitutive assumption on the gravity
settling. This means that the concentration is assumed to be
constant on each cross-section, the inlet is modelled by a
point source and the solids leaving the inlet are distributed
instantaneously and evenly over the entire cross-section.
Analogously, the solids leaving the settler at the outlets are
taken instantaneously from the entire cross-section. Such
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phenomena as turbulence and wall effects are neglected. We
also assume that sedimentation takes place only inside the
settler. Thus, in the inlet and outlet pipes the relative veloc-
ity between the solids and the liquid is assumed to be zero.

The basic constitutive assumption for the settling of solids
is the one by Kynch [25]: the flux of particles per unit area
and time is a function of the concentration only. It is valid for
non-flocculated dispersions of solid particles all of the same
size and shape, which show no compressible behaviour at
any concentration and for which diffusion phenomena are so
small that they can be neglected; cf. experiments reported in
[11,15]. Kynch’s assumption together with the conservation
of mass written as a hyperbolic partial differential equation,
interpreted in the weak sense (distribution sense), makes it
possible to capture the main feature of sedimentation — the
movement of large concentration gradients (shock waves).
The construction of solutions by the method of character-
istics describing sedimentation in the thickening zone or in
batch mode can be found in, for example [5–7,21,25,29,30].

To model the sedimentation behaviour of a wider class
of suspensions more refined assumptions need to be con-
sidered. In particular, the modelling of the compressible be-
haviour of flocculated suspensions at high concentrations
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Fig. 1. Two ideal clarifier–thickener units. The indices are e=effluent,
f=feed and u=underflow.

has attracted much attention. As shown in [1,3,4,14] sedi-
mentation with compression can be modelled with a single
partial differential equation including a non-linear diffusion
term, and can thus be seen as a direct extension of the Kynch
assumption.

At the bottom of the settler the concentration increases
with depth as a result of, among other things, compression
and a converging cross-sectional area. In this paper it is
demonstrated what impact a converging cross-sectional area
has on the increase in concentration at the bottom for incom-
pressible suspensions (a consequence of Kynch’s assump-
tion). The results agree with those obtained by Shannon and
Tory [31], who calculated the exact steady-state profiles for
a settler with a conical bottom region as in Fig. 1(right). For
a flat bottom there is a jump between the concentration at
the bottom inside the settler and the concentration in the out-
let pipe. We emphasize that this refers to a one-dimensional
ideal model and is a consequence of the conservation of
mass and the assumption that there is sedimentation inside
the settler but not in the outlet pipe. Early work by Com-
ings et al. [12,13] and recent work by Farrow et al. [23]
show that jumps do occur at the outlet. In reality mechanical
rake action and flows in more than one dimension influence
the concentrations, especially in the case of a flat bottom or
one with a low slope. With a cross-sectional area that de-
creases with depth there is some possibility of maintaining
a constant concentration at a given height. If the slope is
great enough, solids approaching the slanted side will slide
along the incline, displacing fluid in the interior. For a flat or
low-sloped bottom rakes are normally used to draw solids
to the outlet. If no rakes are used, a natural cone (at the an-
gle of repose) of solids builds up around the outlet. Only the
solids in this inner cone move through the system. Hence,
the settler works as if it had a decreasing cross-sectional
area with greater slopes.

The aim of the modelling of the entire clarifier–thickener
unit is to predict the two outlet concentrations and the con-
centration distribution within the vessel given any loading

conditions, that is, given the feed concentration of the inlet,
the three volume flows and an initial concentration distribu-
tion only within the settler. In particular, it is important to
predict the behaviour of the large discontinuity (the sludge
blanket in waste water treatment) that appears under normal
operating conditions. We also emphasize that the boundary
concentrations at the top and bottom of the settler and just
above and below the feed inlet are parts of the solution and
cannot be prescribed.

Under the ideal physical assumptions described above
and the Kynch assumption, the entire clarifier–thickener
unit can be described completely by a single partial dif-
ferential equation with point source and discontinuous flux
function; see [17,19]. This type of equation has the advan-
tage that it is possible to construct solutions by the method
of characteristics, at least for piecewise constant initial data
and a constant cross-sectional area. The disadvantage is
that non-uniqueness of solution occurs due to the formation
of discontinuities. In order to resolve this mathematical
problem of non-uniqueness so called entropy conditions
must be introduced. They relate fluxes and concentrations
at discontinuities.

For example, within the clarification or the thickening
zone, the entropy condition by Oleinik [27,28] should be
used. It can be written as an inequality involving the same
flux function on both sides of the discontinuity. It can be
motivated (physically and mathematically) by introducing a
small amount of diffusion, which is not included in the ide-
alized assumption by Kynch. This is called a viscous profile
analysis, see e.g. Smoller [32]. The outcome is that unstable
discontinuities are rejected and for each allowed disconti-
nuity the jump condition determines uniquely the speed of
the discontinuity, which is a function of the concentration
values on each side of it.

The conservation of mass at the top, bottom and inlet
of the settler yields jump conditions that involve different
flux functions on either side of these three discontinuities,
which all have the speed zero by the physical configuration.
The six boundary concentrations on either side of these dis-
continuities are not uniquely determined by the three jump
equations. To pick out a unique solution a generalized en-
tropy condition, condition0, is introduced by the author in
[16]. These boundary values cannot be given beforehand,
but are a natural part of the solution. Because of the different
(non-linear) flux functions on either side of these discon-
tinuities, the situation is much more complicated than at a
discontinuity within the clarification or thickening zone. The
boundary concentrations may be discontinuous functions of
time, creating discontinuities that move into the clarification
or thickening zone.

The investigation of the dynamic and steady-state be-
haviour of the entire settler (with constant or varying
cross-sectional area) by means of solutions of partial differ-
ential equations has been done by Chancelier et al. [10] and
the author in [17,19]. In the case of a constant cross-sectional
area a procedure of construction of solutions by means of



S. Diehl / Chemical Engineering Journal 80 (2000) 119–133 121

the method of characteristics together with condition0 is
presented in [17]. However, that paper contains technical
mathematical details that are not of interest for those who
are primarily interested in sedimentation and, furthermore,
the procedure of construction of solution was primarily
introduced in order to show existence of a solution.

One purpose of this article is to describe condition0 with
fewer technical details than in [17]. This will be done in con-
nection with the description of the concentration distribution
at the bottom of a settler with converging cross-sectional
area. Then it is exemplified how analytical solutions can be
constructed.

2. Ideal clarifier–thickener units and the conservation
law

Let u(x, t) denote the (unknown) concentration of solid
particles (mass per unit volume), wheret is the time and
x is the depth from the feed inlet. LetA(x) denote the
cross-sectional area. In this paper we shall investigate two
ideal settler models shown in Fig. 1. The right settler model
has the cross-sectional area:

A(x) =




A−, −H ≤ x < 0

A+, 0 < x < d

a(x), d ≤ x ≤ D,

wherea(x) satisfiesa(d) = A+ anda′(x) < 0. We desig-
nate the region (interval)(d, D) the compaction zone (not
compression zone) because of, as we shall demonstrate, the
concentration increase due to the decreasing cross-sectional
area. The left settler model is the limit of the right one as
d → D. The height of the clarification zone isH for both
models, the depths of the thickening zones areD andd for
the left and right model, respectively. The directions of the
known volume flowsQf , Qe andQu (volume per unit time)
are shown in the figure. The known concentration of the feed
inlet is denoted byuf (t) and the unknown concentrations of
the outlets at the top and bottom are denoted byue(t) and
uu(t), respectively.

According to the constitutive assumption by Kynch [25]
the settling velocity of the solids due to gravity in a batch
settling column is a function of the local concentration only;
vsettl(u). Note thatu = φρs, whereφ denotes the volume
fraction of solids andρs their density. The batch settling flux
(mass per unit time and unit area) is denoted byfb(u) =
vsettl(u)u and is assumed to have the form shown in Fig. 2.
The maximum packing concentration is denoted byumaxand
the only inflection point byuinfl.

Consider the interior of the thickening zone with the con-
stant cross-sectional areaA+. The bulk velocity is defined
as:

v = Qu

A+
.

Fig. 2. The flux curvesfb, f and g. The dashed lines have the slopes
v=Qu/A+, and −Qe/A+, respectively. Note that the inflection pointuinfl

is the same for the three flux functions.

The conservation of mass can be written as the partial dif-
ferential equation (conservation law):

∂u

∂t
+ ∂(vsu)

∂x
= 0, (1)

wherevs is the velocity of the solids. Ifvl denotes the liquid
velocity, then the bulk velocity can be written:

v = vsφ + vl(1 − φ) = vs − (vs − vl)(1 − φ). (2)

Here, the last term is actually the batch settling velocity.
In batch sedimentationv = 0 hence Eq. (2) yieldsvs =
(vs − vl)(1 − φ) ≡ vsettl which by Kynch’s assumption is
a function only ofu(= ρsφ). Thus, Eq. (2) can be written
vs(u) = vsettl(u) + v and the flux function of Eq. (1) can be
expressed as:

f (u) = vs(u)u = (vsettl(u) + v)u = fb(u) + vu.

Eq. (1) can be written:

∂u

∂t
+ f ′(u)

∂u

∂x
= 0, (3)

which is a quasi-linear partial differential equation with the
property that a constant concentrationu0 propagates with
the speedf ′(u0) in anx–t coordinate plane; cf. Kynch [25].
These straight lines of constant concentration are called char-
acteristics. Two characteristics with different concentration
values carrying initial data from thex-axis (att = 0) may
intersect and then a discontinuity appears. The jump condi-
tion for a discontinuityx = x(t) having the concentration
valuesux− andux+ on the left and right side, respectively,
is:

x′(t) = f (ux+) − f (ux−)

ux+ − ux−

and the entropy condition by Oleinik [27,28] is:

f (α) − f (ux−)

α − ux− ≥ f (ux+) − f (ux−)

ux+ − ux−
for all α betweenux− andux+. (4)

This condition means that the graph off (u) lies above
(below) the chord joining the points(ux−, f (ux−)) and
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Fig. 3. Left: flux functions atx=d=2 m (the uppermost curve),x=D=4 m (the bottom-most curve) and at seven intermediate equidistantx-values. Right:
the steady-state solution whenfthick=4 kg/(m2 h) and the flux in the clarification zone is zero. The underflow concentration isuu=fthick/v=5.65 kg/m3,
which is only negligibly higher than the bottom concentration, sincea(D)/Qu≈0.

(ux+, f (ux+)) whenux− is less (greater) thanux+. As for
the examples of this paper it is assumed that the reader is
familiar with the concepts above and the method of charac-
teristics, see e.g. [26,32].

Assuming that the particles follow the liquid outside the
settler, the mass per unit time entering it isQf uf (t) and leav-
ing it is at the effluentQeue(t) and through the underflow
pipeQuuu(t). Extend the functionA(x) continuously to the
whole x-axis by lettingA(x) = A(−H) for x < −H and
A(x) = A(D) for x > D. Then the conservation of mass
for the entire settler can be written:

∂

∂t
(A(x)u) + ∂

∂x
(F0(u, x)) = Qf uf (t)δ(x), (5)

whereδ(x) is the delta function and the flux function (mass
flux per unit time) is:

F0(u, x) =




−Qeu, x < −H

A(x)fb(u) − Qeu, −H < x < 0
A(x)fb(u) + Quu, 0 < x < D

Quu, x > D.

Here, natural flux functions appear above and below the
settler. Analyses of the dynamic and steady-state behaviour
of Eq. (5) have been presented by Chancelier et al. [8–10]
and by the author in [19]. Normalizing Eq. (5) by dividing
by A+ = A(0+) gives:

A(x)

A+
∂u

∂t
+ ∂

∂x
(F (u, x)) = s(t)δ(x),

with the source function (mass per unit time and unit area):

s(t) = Qf uf (t) · A+

and the flux functionF(u, x) = F0(u, x)/A+. For the right
settler model this is:

F(u, x)=




− Qe

A+
u ≡ ge(u), x < −H

A−
A+

fb(u) − Qe

A+
u ≡ g(u), −H < x < 0

fb(u) + vu = f (u), 0 ≤ x ≤ d
a(x)

A+
fb(u) + vu ≡ fa(u, x), d ≤ x ≤ D

vu ≡ fu(u), x > D,

(6)

where we have defined the flux functiong in the clarification
zone (see Fig. 2),fa in the compaction zone (see Fig. 3) and
the outlet fluxesge andfu. These flux functions differ from
those in [19], which were obtained by normalizing byA(x)

instead. This can only be done for functionsA(x) that are
continuous atx = −H, 0, D because of the discontinuities
of the flux functionF0(u, ·) and the delta function in Eq. (5).
In the present paper we allowA(x) to be discontinuous at
x = 0). All fluxes are positive in the direction of thex-axis.
Note also that the bulk velocity in the clarification zone is
−Qe/A− not −Qe/A+.

Since we are dealing with discontinuous weak solutions1

u(x, t) of partial differential equations the boundary con-
centrations:

u−(t) = lim
ε↘0

u(−ε, t), u+(t) = lim
ε↘0

u(ε, t),

uH (t) = lim
ε↘0

u(−H + ε, t), uD(t) = lim
ε↘0

u(D − ε, t),

will also be discontinuous. In order to state formulae that
should hold pointwise (at every fixed timet) we have to
define the following additional limits at each boundary:

u−(t) = lim
ε↘0

u−(t + ε), u+(t) = lim
ε↘0

u+(t + ε),

uH (t) = lim
ε↘0

uH (t + ε), uD(t) = lim
ε↘0

uD(t + ε).

1 Some technical regularity assumptions on piecewise smoothness and
monotonicity are supposed to be satisfied, see [17].
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These four boundary functions are continuous from the right
and we define this to hold foruf (t) (hences(t)), too. The
unknown functionsue(t) and uu(t) will automatically be
continuous from the right by the definitions that will follow.
At the feed inlet,x = 0, the conservation law yields the
jump condition:

Qf uf (t) = A+fb
(
u+(t)

) + Quu
+(t) − (

A−fb
(
u−(t)

)
−Qeu

−(t)
) ⇔ f

(
u+(t)

) = g
(
u−(t)

) + s(t)

(7)

and at the outlets we get:

−Qeue(t) = A−fb

(
uH (t)

)
− Qeu

H (t) ⇔

ge (ue(t)) = g
(
uH (t)

)
(8)

and

Quuu(t) = A(D)fb

(
uD(t)

)
+ Quu

D(t) ⇔

fu (uu(t)) =
{

f
(
uD(t)

)
(left model)

fa
(
uD(t), D

)
(right model).

(9)

3. Obtaining unique boundary concentrations

The three jump conditions (Eqs. (7)–(9)) relate six bound-
ary concentrations within and outside the settler. They are
all parts of the solution of the problem of determining the
behaviour of an ideal clarifier–thickener unit. As in the case
of a discontinuity within the thickening zone — the jump
condition (Eq. (3)) is not sufficient to determine a unique
solution for given initial data — the jump conditions in
Eqs. (7)–(9) do not determine the boundary concentrations
(hence the concentration distribution within the settler)
uniquely for given initial data and feed concentrationuf (t).
A uniqueness condition that picks out the physically correct
boundary concentrations for rather general flux functions
(with many inflection points) was introduced in [16] and
called condition0. This is a generalization of Oleinik’s
entropy condition (Eq. (4)). It is motivated physically by a
conservative numerical method (Godunov [24]) and by anal-
ysis of viscous profiles and their stability; see [16,18,22].
In this section condition0 will be motivated and explained
by starting with a physical/mathematical discussion about
the jump condition (Eq. (9)).

3.1. Concentrations and fluxes in the compaction zone at
steady state

The conservation law for the compaction zone of the right
model of Fig. 1, i.e. the intervald < x < D is:

a(x)

A+
∂u

∂t
+ ∂

∂x
(fa(u, x)) = 0, d < x < D. (10)

The characteristics (in thex–t plane) of this equation are
not straight lines and the concentration values carried by
these are not constant. In consequence, characteristics cannot
easily be used to construct a solution without numerical
calculations, not even to obtain a steady-state solution. Let
A+fthick denote the steady-state flux (mass per time unit) in
the thickening zone (this is denoted byΦ thick in [19]). Hence,
fthick is the flux per unit area. The steady-state solutionu =
us(x) of Eq. (10) satisfies:

fa(u, x) ≡ a(x)

A+
fb(u) + vu = fthick. (11)

The following facts hold forus(x) in the case witha′(x) < 0
(andQu > 0 (see [19]):
• us(x) is uniquely determined byfthick.
• If us is constant, then eitherus ≡ 0 (fthick = 0) or us ≡

umax (fthick = f (umax)).
• If us is not constant, then it is strictly increasing with

depth with at most one discontinuity.
We also mention that there is at most one discontinuity at

steady state in the whole interval 0< x < D. For the spe-
cific valuefthick = f (uM) the discontinuity can be located
anywhere in 0≤ x ≤ d since the cross-sectional area is con-
stant there. Here,uM is the concentration value of the local
minimum off (see Fig. 3). Letum denote the concentration
less thanuM satisfyingf (um) = f (uM).

3.1.1. Numerical values used in the figures
In order to show graphs of numerical calculations of so-

lutions the following numerical values are used throughout
the paper:

H = 1 m
d = 2 m (except in Fig. 19)
D = 4 m
A+ = π302 m2

A− = A+ − π22 m2

uinfl = 4.15 kg/m3

umax = 10 kg/m3

um = 0.80 kg/m3

uM = 7.50 kg/m3

Qu = 2000 m3/h
f (uM) = 6.25 1 kg/(m2h)
Qe = 2500m3/h (from Section 3.3 on)
Qf = 4500m3/h (from Section 3.3 on)

The feed concentrationuf will have different values in the
examples. For the compaction zone of the right settler model
we have chosena(x) = π(30−14.75(x −2)2) m2, 2 ≤ x ≤
4 hence,A(2) = A+ andA(4) = π0.52 m2.

In Fig. 3 fa(u, x) is plotted as a function ofu for dif-
ferent values of the depthx. We shall now investigate the
steady-state solution for different values offthick. Note that
this is the flux at every pointx in the intervald < x < D.
For low values offthick there is a unique intersection with
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the flux functionf (u), hence the concentration in the thick-
ening zoneus(d) < um (see Fig. 3). We assume that the
effluent flow Qe is sufficiently low so that the concentra-
tion, and the flux, in the clarification zone is zero. The figure
shows that for every givenx0 ∈ [d, D] there is a unique
intersection between the flux curvefa(u, x0) and the hor-
izontal line with the flux valuefthick. This intersection de-
fines uniquely the concentrationu = us(x0) as the solution
of fa(u, x0) = fthick. In this way, we can clearly see that the
concentration is increasing with depth, following the family
of flux curvesfa(·, x) with x as the parameter.

If a(D) is close to zero, thenfa(u, D) ≈ vu which means
that the sedimentation becomes negligible (the relative ve-
locity between liquid and solids is zero). Note that the jump
condition (Eq. (9)) (for the right settler model) implies:

uu = uD + a(D)

Qu
fb(uD).

For an ideal model we may leta(D) = 0 which implies that
fa(u, D) = vu and, hence,uu = uD.

Next we consider a case with a slightly higher fluxfthick =
5.63 kg/m2) and still us(2) < um (see Fig. 4). As in the
previous case there is a unique intersection between each
flux curve fa(·, x) for every fixedx ∈ [2, 2.5) and the
horizontal line with the flux valuefthick. At x = 2.5 m there
are two intersections. The unique solution makes a jump
from the concentrationus(2.5− 0) = 1.62 tous(2.5+ 0) =
6.15 and then, forx ∈ (2.5, 4] increases continuously again.
The discontinuity satisfies both the jump condition (Eq. (3))
and the entropy condition (Eq. (4)) (the graph offa(u, 2.5)

lies above the chord), which both hold for Eq. (10) since
a(x) is a continuous function. Hence, this is the unique
steady-state solution for the given fluxfthick (if any other
concentration distribution is used as initial data, for example,
obtained by jumping between the flux curves in any other
order, then Eq. (4) will be violated and Eq. (10) will produce
a non-stationary solution).

In the boundary casefthick = f (uM) = f (um) the
steady-state solution is uniquely determined in the inter-

Fig. 4. Left: the third flux function from above isfa(u, 2.5 m); fthick=5.63 kg/(m2 h). Right: the steady-state solution with a sludge blanket atx=2.5 m
(the flux is zero in the clarification zone). The underflow concentration isuu=fthick/v=7.96 kg/m3.

val (2, 4) but the discontinuity is arbitrarily located in
[0, 2] (see Figs. 5 and 6). Note thatus(2 + 0) = uM and
u′

s(2 + ε) → ∞ asε → 0+.
It should now be clear that forus(2) < uM the largest

fthick the thickening zone can handle isf (uM) = f (um) =
6.25 kg/(m2 h). A value offthick abovef (uM) (us(2) < uM)
is not possible in steady state, because there is no flux curve
fa(·, x) above the minimum point((uM, f (uM)) for anyx.
The only possibility to reach the outlet fluxfu(u) = vu ≈
fa(u, D) is to make a jump from a lower concentration to
a higher with a chord above the flux curve and this violates
the entropy condition (Eq. (4)).Consequently, in the region
(0, d] there is no concentration in the interval(um, uM) at
any steady-state situation.

If us(d) ∈ [uM, umax] then, necessarily, the steady-state
flux in the thickening zonefthick ∈ [f (uM), f (umax)]. The
only possibility for a discontinuity is at the feed levelx = 0
(see Fig. 7(right)).

3.1.2. When does a discontinuity appear in the compaction
zone?

We have seen that for low values offthick the steady-state
solution in(d, D) is continuously increasing, and for larger
values there is a discontinuity, which location is higher
(lower x values) the largerfthick is. The discontinuity exists
whenfa(·, x) has a local minimum point, which is the case
as long as the slope of the flux curve is negative atuinfl. If
a(x) is strictly decreasing andf ′

b(uinfl) < 0 it follows that
the slope at the inflection point:

∂fa

∂u
(uinfl, x) = a(x)

A+
f ′

b(uinfl) + v,

as a function ofx is (continuously) increasing from negative
values to positive (assuminga(D) ≈ 0), which is clearly
seen in the figures. Hence, there is a uniquex = x0 for
which this slope is zero:

a(x0)

A+
f ′

b(uinfl) + v = 0.
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Fig. 5. Left: flux functions andfthick=f(uM)=f(um)=6.25 kg/(m2 h). Right: a steady-state solution with a sludge blanket atx=2 m (the flux is zero in
the clarification zone). Note thatus(2−0)=um=0.80 kg/m3 and us(2+0)=uM=7.50 kg/m3. The underflow concentration isuu=fthick/v=8.83 kg/m3.

Fig. 6. Two steady-state solutions withfthick=f(uM)=f(um)=6.25 kg/(m2 h).

x0 is uniquely determined by this equation and it can be
used to write the corresponding flux value as:

fa(uinfl, x0) = a(x0)

A+
fb(uinfl) + vuinfl

= v

(
uinfl − fb(uinfl)

f ′
b(uinfl)

)
,

which is independent ofa(x0). With the numerical data used
in the figures, this flux value is 5.05 kg/(m2 h). Hence, for

Fig. 7. A steady-state solution withfthick=6.50 kg/(m2 h) (the flux is zero in the clarification zone).us(x)=8.80 kg/m3 for 0<x≤2. The underflow
concentration isuu=fthick/v=9.19 kg/m3.

0 ≤ fthick ≤ 5.05 or fthick ≥ f (uM) = 6.25 there is no
discontinuity in the compaction zone and for 5.05 < fthick <

f (uM) = 6.25 there is one.

3.2. Dynamic boundary concentrations at the bottom

So far we have seen that for the right settler of Fig. 1
the only possibility for the concentration atx = d in a
steady-state situation is to lie in [0, um] or [uM, umax] and
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that the underflow concentration is determined as the inter-
section of the constant fluxfthick within the regiond ≤ x <

D and the straight line with slopev.
The reasoning above holds for anyd < D. In the limit

cased → D, corresponding to the left settler model, the
only possible boundary concentration at the bottom is still
in [0, um] or [uM, umax]. In a dynamic situation this is still
true, since the flux is continuous overx = D by the conser-
vation of mass. Hence, we have motivated that the boundary
concentration at the bottom satisfies:

uD(t) ∈ [0, um] ∪ [uM, umax].

The conservation law used in a neighbourhood of the bottom
x = D (left settler model) can be written:

∂u

∂t
+ ∂f (u)

∂x
= 0, x < D (12)

f (uD(t)) = fu (uu(t)) , x = D (13)

∂u

∂t
+ ∂fu(u)

∂x
= 0, x > D (14)

whereuu(t) is the boundary concentration belowx = D.
The jump condition (Eq. (13)) must be supplemented by
an entropy condition, which should be a generalization
of Eq. (4) since two different flux functions are involved.
Furthermore, the two boundary concentrationsuD(t) and
uu(t) ≡ limε→0+ u(D + 0, t + ε) should be determined
given initial data only forx < D. The generalized entropy
condition given in [16] (condition0) and its use in the
construction of a solution in a neighbourhood ofx = D for
all possible initial data is described in Section 7.2 of [17].
Here we give the following example.

Assume that the initial datum is the constantu0 = 1.5
(see Fig. 8) above the bottom of the thickening zone, i.e., let
u(x, 0) = u0 for x < D in the problem (Eqs. (12)–(14)).
Note that we do not specify any initial data forx > D. As
we have motivated above the concentrationu0 ∈ (um, uM)

Fig. 8. The use of condition0 at the bottom of the left settler model. Left: flux functions and auxiliary functions (thick dashed). Right: solution shown
by characteristics (thin lines) and discontinuities (thick lines).

will not be kept as a boundary concentration any open time
interval. The unique solution is constructed in the following
way. Given the flux functionf above the boundaryx = D

define the auxiliary function:

f̆ (u; u0) =
{

maxα∈[u,u0]f (α), 0 ≤ u ≤ u0
minα∈[u0,u]f (α), u0 < u ≤ umax,

(15)

which is a non-increasing function (see Fig. 8). In a sym-
metrical way we define an auxiliary non-decreasing func-
tion given the flux function below the boundary (x = D).
Since in the present examplefu is already increasing, the
auxiliary functionf̂u = fu independently of any initial data
for x > D which, therefore, need not be given.Condition
0states that the flux at the boundary (x = D) is the flux
valueγ of the intersection off̆ and f̂u, and that the bound-
ary concentrations satisfy:

f (uD(t)) = γ = fu (uu(t)) .

The flux value at the boundary isγ = f (uM) = 6.2 (see
Fig. 8(left)). The boundary value at the bottom within the
settler isuD(t) = uM = 7.5. The unique solution, which
is constructed by the method of characteristics, is shown in
Fig. 8(right). From the bottom there is a rising discontinuity,
below which the concentration is continuously increasing
from u∗

0 = 6.30 touM = 7.50. The solution in this region is
u(x, t) = (f ′)−1( x−D

t
) (f ′ is increasing to the right of the

inflection point, hence invertible for these concentrations).
u∗

0 is defined as the concentration greater thanu0 at which
the tangent of the graph off passes through(u0, f (u0)) (for
a strict definition see Ballou [2]). Because of the increasing
functionfu the characteristics inx > D are always directed
downwards (in the positivex-direction). Hence, initial data
need not be given forx > D. The boundary valueuu(t) is
uniquely determined by Eq. (13), which gives:

uu(t) = f
(
uD(t)

)
v

= uD(t) + fb
(
uD(t)

)
v

= 8.83 kg/m3.
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Fig. 9. Left: flux functions, auxiliary functions (thick dashed) and the concentrationsu1=5.73 kg/m3, ue=2.56 kg/m3. Right: the solution satisfying
condition0. Note that the slopes of the characteristics are (A+/A−) ge

′(ue)=−Qe/A− (for x<−H), which is the bulk velocity, and (A+/A−) ge
′(u1)=−Qe/A−

(for x>−H) because of the definition of the flux functions (Eq. (6)).

The example above holds qualitatively for anyu0 ∈
(um, uM) with the addition that ifu0 ∈ [uinfl, uM) thenu∗

0
is replaced byu0 and the previously rising discontinuity is
a line of continuity instead.

If u0 ∈ [0, um] ∪ [uM, umax] then the bottom concentra-
tion is the constantu0 and the underflow concentration is
uu = f (u0)/v. We omit the details of this and the cases in
which the concentration is not constant above the bottom
and refer to [17].

3.3. Boundary concentrations at the top

The handling of the concentrations at the effluent is anal-
ogous to the way the boundary concentrations at the under-
flow were treated above. The conservation law for the region
x < −H is:

∂u

∂t
− Qe

A−
∂u

∂x
= 0,

which is a linear convection equation that carries away the
boundary concentrationsue(t) ≡ limε→0+ u(−H −0, t+ε)

from the boundaryx = −H (to lower x values in thex–t
plane) with the bulk speedQe/A−. The construction of a
solution involves the auxiliary functions̆ge = ge and ĝ,
cf. [17]. For example, assume that a discontinuity with the
constant concentrationu1 = 5.72 below has reached the
top of the settler att = 0, that is, the initial concentration is
u1 in the (upper part of the) clarification zone. The unique
solution thereafter is shown in Fig. 9. The boundary con-
centration at the top within the settler isuH (t) = u1 and
the effluent concentration is given by the jump condition
(Eq. (8)), which gives:

ue(t) = uH (t) − A−fb
(
uH (t)

)
Qe

. (16)

Hence,ue is less thanuH (or equal ifuH = 0 orumax). This
is due to the fact that the particles within the clarification

zone settle. In fact, if the gravity settling force downwards
is balanced by the liquid’s drag force upwards, then it is
possible to have a non-zero concentration of particles at
the very top of the clarification zone and still have a zero
effluent concentration.

3.4. Boundary concentrations at the feed level

The most complicated situations occur at the feed level.
The jump condition (Eq. (7)) is not sufficient to determine
the two boundary concentrationsu− above andu+ below
the feed level. Given initial data att = 0 with u− and
u+ the limit concentration above and belowx = 0 respec-
tively, form the auxiliary non-increasing function̆g(u; u−),
cf. (Eq. (15)), and the non-decreasing function:

f̂ (u; u+) =
{

minα∈(u,u+)f (α), 0 ≤ u ≤ u+
maxα∈(u+,u)f (α), u+ < u ≤ umax.

Condition0 states that, for every fixedt the flux atx = 0
is the flux valueγ (t) of the intersection of̆g (·; u−(t)) +
s(t) and f̂ (·; u+(t)) and that the boundary concentrations
satisfy:

f (u+(t)) = γ (t) = g(u−(t)) + s(t).

Note that the latter equation may be satisfied by several
candidates ofu+ and u−, however, only one pair can be
used as limit concentrations of a solution. This is described
(and proved) generally in [17] and in the next section we
show the procedure of construction by examples.

4. Construction of global solutions

In the two following examples we consider the left set-
tler model of Fig. 1 filled with only liquid, that is, with zero
concentration as the initial data. The settler is fed with two
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Fig. 10. Example 1. The solution in the case a settler is filled with solids at a constant rate. Thin lines are characteristics and thick lines are discontinuities
except forx1 and x2, which are lines of continuity.

different constant concentrations, which both result in over-
flow situations. To construct solutions in a neighbourhood of
the feed inlet we conclude from the jump condition (Eq. (7))
(and condition0) that it is convenient to draw the graphs of
f (u)andg(u)+ s (and their auxiliary functions) in the same
figure. We also remark that in the case of a continuousA(x)

at x = 0 the feed concentration is the intersection of these
graphs. In the present caseA+ ≈ A− and uf is approx-
imately the intersection. This is because the concentration
valueuiof an intersection satisfiesf (ui) = g(ui) + s and:

uf = A+s

Qf
= A+

Qf

(
f (ui) − g(ui)

)

= A+
Qf

(
fb(u

i) + Qu

A+
ui − A−

A+
fb(u

i) + Qe

A+
ui

)

= ui + A+ − A−
Qf

fb(u
i),

where we have used thatQu + Qe = Qf . The highest
value of the last term for the simulations in this paper is
A+−A−

Qf
max0≤u≤umax

fb(u) = 0.02 kg/m3, henceuf ≈ ui .

Example 1. A settler with the initial concentration zero is
fed with a constant concentration. The numerical values are:

uf = 5.52 kg/m3

s = 8.79 kg/(m2 h)
u0 = 1.50 kg/m3

u∗
0 = 6.30 kg/m3

u1 = 5.73 kg/m3

uu = 8.83kg/m3

ue(∞) = 2.87 kg/m3

and the solution is shown in Fig. 10 in terms of characteris-
tics and discontinuities.

The graphs off (u) andg(u) + s are shown in Fig. 11
together with those of̂f (u; 0) andğ(u; 0)+s. The intersec-
tion of the graphs of these two auxiliary functions occurs at
the concentrationu0 and the flux valueγ = s. The (unique)
boundary concentrations areu+(t) = u0 and u−(t) = 0
for t > 0 until any wave of another concentration reaches
x = 0, which occurs att = t4. The reason for this is that
f̂ (·; u0) ≡ f̂ (·; 0) holds, which implies that the graphs and

implications of Fig. 11 hold for everyt ∈ (0, t4). The solu-
tion is therefore zero in the clarification zone for 0≤ t < t4.

Between the straight linesx1 = f ′(0)t andx2 = f ′(u0)t

there is an expansion wave consisting of all concentrations
between zero (alongx1 andu0 (alongx2). The expansion
wave can be expressed asu(x, t) = (f ′)−1 (x/t) (sincef ′
is decreasing to the left of the inflection point, it is invertible
for these concentrations).

At the bottom the concentration increases continuously
from zero after the time pointt1 see Fig. 12(left), and so does
uu(t). Let t2 denote the time point for whichuD(t2) = um
anduD(t2) = uM. For t > t2 the boundary concentration is
uD(t) = uD(t) = uM. At t = t2, a discontinuityx3 emanates
from the bottom with the initial velocity zero (there is a
jump betweenum anduM and the final velocity:

x′
3(t3) = f (u∗

0) − f (u0)

u∗
0 − u0

which is also the slope of the discontinuityx4. During t2 <

t < t3 the concentration abovex3 increases fromum to u0
and the concentration below decreases fromuM (at the bot-
tom) tou∗

0, cf. Fig. 12(right). The solution in the thickening
zone to the right ofx3 andx4 is defined by the character-

Fig. 11. Example 1. The situation at the feed level att=0. The initial
boundary values areu−(0)=u+(0)=0. Note thatuf is (approximately) the
intersection of the two graphs.
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Fig. 12. Example 1. Left: the situation at the bottom at a time pointt∈(t1, t2). The small arrows show the directions of movement with increasing time.
Right: the concentrations appearing abovex3 are [um, u0] and below are [u0

∗, uM].

istics that emanate tangentially fromx3 (which is called a
contact discontinuity).

At t = t4 the discontinuityx4 reaches the feed level and
the situation there changes. The graphs off̂ (u; u∗

0) and
ğ(u; 0) + s are shown in Fig. 13. The intersection of these
two graphs occurs at the flux valueγ (t4) = f (u∗

0) and the
concentrationu1 which is the solution of:

g(u1) + s = f (u∗
0).

The new boundary concentration in the clarification zone
is u−(t4) = u1 yielding characteristics emanating from the
feed level upwards. The boundary concentration below the
feed level is continuous att4: u+(t4) = u+(t4) = u∗

0. After
this time pointu+(t) increases asymptotically up touMat
t = ∞ which implies that the concentrationu−(t) is slightly
increasing up to its limit valueu2 > u1 determined by
the intersection off (uM) (the flux value of the plateau of
f̂ (u; uM) and g(u) + s. We leave the details of forming
f̂ (·; u+(t)) andğ(·; u−(t)) + s etc. to the reader.

At t = t5 the discontinuityx5 reaches the top of the settler
resulting in an overflow and the situation shown in Fig. 9

Fig. 13. Example 1. The situation at the feed level att=t4.

holds, except for the fact that the boundary concentration at
the top is now increasing slightly aboveu1 ast → ∞.

Example 2. In this example the initial data and values of
the volume flows are the same as in Example 1 except for a
higher feed concentration. The numerical values are:

uf = 6.91 kg/m3

s = 11 kg/(m2 h)
u0 = 2.44 kg/m3

u∗
0 = 5.27 kg/m3

u1 = 5.31 kg/m3

u2 = 6.43kg/m3

ue(t3) = 1.45 kg/m3

ue(∞) = 5.38 kg/m3

uu = 8.83 kg/m3

and the solution is shown in Fig. 14. The initial situation at
the feed level is shown in Fig. 15. The intersection between
the two dashed graphs occurs at the flux valueγ = f (u0)

whereu0 is the concentration of the local maximum point
of f . Note that in this examples > f (u0) which implies
that solids will be transported into the clarification zone
immediately. The (unique) boundary concentrations at the
feed level areu+(t) = u0 andu−(t) = u1 for 0 ≤ t < t4.

Fig. 14. Example 2. The solution in the case of a higher feed concentration
than in Example 1. Thin lines are characteristics and thick lines are
discontinuities except forx1, x4 and x5, which are lines of continuity.
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Fig. 15. Example 2. The situation at the feed level att=0.

In the clarification zone a shock wavex2 is immediately
formed having the velocity:

x′
2(t) = g(u1) − g(0)

u1 − 0
= g(u1)

u1
< 0

according to the jump condition. Hence, it reaches the
effluent level at the time point:

t3 = Hu1

−g(u1)
.

In the thickening zone there is an expansion wave similar
to the one in Example 1, but this one is spread up to the feed
level since the characteristic with concentrationu0 has zero
slope. The solution in the thickening zone on the right of
x3 is defined by the characteristics that emanate tangentially
from x3. The concentration on the right ofx3 decreases with
height fromuM (at the bottom) tou∗

0 at (x, t) = (0, t4).
The discontinuityx3 reaches the feed level att4. The new

boundary concentration in the clarification zoneu−(t4) = u2
is defined by the intersection of the graphs shown in Fig. 16,
hence it can be obtained as the solution of:

f (u∗
0) = g(u2) + s.

Fig. 16. Example 2. The situation at the feed level att=t4.

The situation at the feed level aftert = t4 is qualita-
tively the same as in Example 1. In the clarification zone
there is a small expansion wave betweenx4 and x5 sepa-
rating the concentrationsu1andu2. Since, in this example,
u1 > uinfl, x4 is a line of continuity. Ifu1 < uinfl, thenx4
would be a discontinuity instead with the concentrationu∗

1
(defined by drawing a tangent as shown previously) on the
right.

The situation at the bottom is the same as in Example 1,
and the effluent concentration is calculated from Eq. (16);
cf. the numerical solution in Fig. 20.

5. Numerical solutions

The numerical method described in [19,20] is used. It is
based on Godunov’s [24] method, in which the concentration
related to each grid point along thex-axis at a certain time

Fig. 17. Example 1. Numerical solution corresponding to the analytical
one of Fig. 10.
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point is the average of an analytical solution originating
from piecewise constant initial data at the preceding time
point. It is a conservative method, which means that although
discontinuities are smoothed (by numerical diffusion), they
are located correctly, that is, they move with the correct
speed.

Example 1, continued. Fig. 17 shows the numerical solu-
tion when the left settler model is filled with solids. With
the same initial data and feed concentration Fig. 18 shows
the numerical solution for the right settler model. Since the
volume of this settler is less than the other one, it cannot
keep as much mass and is thus filled up faster. In order to
investigate the limit cased → D numerically we present
in Fig. 19 the numerical solutions for different values ofd.
We should mention that although numerical simulations are
possible for the right settler model, a drawback is that the

Fig. 18. Numerical solution of Example 1 in the case of a compaction
zone betweenx=d=2 and 4 m.

Fig. 19. Numerical solutions in the case of a compaction zone withd=3
m (upper) and 3.8 m (lower).

upper bound on the time step length tends to zero as the
cross-sectional areaa(D) tends to zero; cf. [17]. This is be-
cause of the bulk velocityQu/a(D) at the bottom, which
carry information very fast asa(D) is small.

Example 2, continued. The numerical solution is shown in
Fig. 20 for the left settler model. Note that the high feed
concentration implies in this case that solids are building
up immediately in the clarification zone. This is an example
showing non-monotone concentration distributions during a
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Fig. 20. Example 2. Numerical solution corresponding to the analytical one
of Fig. 14. Note the different direction from which the three-dimensional
graph is shown.

long part of the transient. However, the final steady-state
solution is non-decreasing with depth, which is generally
true for a settler with non-increasing cross-sectional area.

6. Conclusions

The restriction to one dimension in the modelling of con-
tinuous sedimentation means that several idealized assump-
tions are made. Usually the cross-sectional area is assumed
to be constant all the way down to the bottom. This is ad-
vantageous when constructing solutions analytically as well
as numerically (assuming the Kynch constitutive assump-
tion holds). However, the situations at the inlet and outlets
are complex even for such an ideal model. For example,
the discontinuity between the bottom concentration and the

underflow concentration under normal operating conditions
has been discussed in the literature and different conditions
have been suggested to hold in dynamical situations. In this
paper it has been shown that this discontinuity is a natural
consequence of the ideal model by considering a model
with a converging cross-sectional area at the bottom (com-
paction zone). Concurrently, the increase of concentration
in the compaction zone only due to the gravity settling (no
compression) has been demonstrated, which is in agreement
with the earlier results by Shannon and Tory [31]. In real-
ity an increase in concentration at the bottom is observed.
However, there are additional phenomena that affect the
concentration distribution, e.g. rake action and flows in two
or three dimensions.

The generalized entropy condition introduced in [16]
resolves the problems of determining the concentrations at
the inlet and the outlets (of an ideal model) at any loading
condition. The generalized entropy condition is in this pa-
per illustrated by considering a settler model with constant
cross-sectional area below the feed level as a limit model
of another one with a converging cross-sectional area at the
bottom. Mathematically, this means that a discontinuity in
flux functions (betweenf andfu) has been studied by con-
sidering a continuous transition between them. This type of
smoothing procedure has been performed in a more gen-
eral and rigorous way for general flux functions in [18,22],
where the addition of a small amount of diffusion is treated
simultaneously. The use of this condition in the construc-
tion of solution for the entire settler has been demonstrated
in two examples accompanied by numerical solutions.
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