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Abstract

Solid-liquid separation by the process of continuous sedimentation in a clarifier—thickener unit, or settler, is difficult to model. Simplified
assumptions on the behaviour of the solids, the flows, the physical design of the settler, etc. still leave the fundamental process higk
non-linear. A fairly simple model consists of a one-dimensional settler, with a constant or varying cross-sectional area, in which an idee
suspension of solids behaves according to the Kynch assumption (the settling velocity is a function of the local concentration only) and tt
conservation of mass. At the bottom of the settler the concentration increases with depth as a result of, among other things, compression :
a converging cross-sectional area. It is important to understand fully the mathematical implications of the simplified assumptions befor
investigating more complex models. In this paper it is demonstrated what impact a converging cross-sectional area has on the incre:
in concentration at the bottom for incompressible suspensions (a consequence of Kynch’'s assumption). This analysis leads to a natt
boundary condition at the bottom, which is a special case of a generalized entropy condition for the type of partial differential equatior
under consideration. The mathematical problems concerning the boundary conditions at the top, bottom and inlet are resolved uniquely
this generalized entropy condition. One aim of the paper is to describe and elucidate this condition by examples leaving out some technic
mathematical details. The construction of a unique solution, including the prediction of the outlet concentrations, is described by example
in the case of a constant cross-sectional area. Comparisons with numerical solutions are also presented. © 2000 Elsevier Science B.V.
rights reserved.
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1. Introduction phenomena as turbulence and wall effects are neglected. We
also assume that sedimentation takes place only inside the
Continuous sedimentation, where gravity is the driving settler. Thus, in the inlet and outlet pipes the relative veloc-
force, is a commonly used solid—liquid separation pro- ity between the solids and the liquid is assumed to be zero.
cess in various industrial applications. It takes place in a  The basic constitutive assumption for the settling of solids
clarifier—thickener unit or settler, which has one inlet (some- is the one by Kynch [25]: the flux of particles per unit area
where in the middle) and two outlets (at the top and bottom). and time is a function of the concentration only. Itis valid for
For mathematical modelling purposes we consider ideal non-flocculated dispersions of solid particles all of the same
settlers shown in Fig. 1. The concept of the ideal thickener size and shape, which show no compressible behaviour at
was introduced and analysed by Shannon and Tory [31]. any concentration and for which diffusion phenomena are so
The settlers are ideal in the sense that the concentrationsmall that they can be neglected, cf. experiments reported in
distribution is influenced only by the conservation of mass [11,15]. Kynch’s assumption together with the conservation
in one dimension, perhaps with a varying cross-sectional of mass written as a hyperbolic partial differential equation,
area, together with a constitutive assumption on the gravity interpreted in the weak sense (distribution sense), makes it
settling. This means that the concentration is assumed to bepossible to capture the main feature of sedimentation — the
constant on each cross-section, the inlet is modelled by amovement of large concentration gradients (shock waves).
point source and the solids leaving the inlet are distributed The construction of solutions by the method of character-
instantaneously and evenly over the entire cross-section.istics describing sedimentation in the thickening zone or in
Analogously, the solids leaving the settler at the outlets are batch mode can be found in, for example [5-7,21,25,29,30].
taken instantaneously from the entire cross-section. Such To model the sedimentation behaviour of a wider class
of suspensions more refined assumptions need to be con-
* Fax: +46-46-2224010. sidered. In particular, the modelling of the compressible be-
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@ 1“‘ Qe Ue Qr luf Qe Ue conditions, that is, given the feed concentration of the inlet,

| |*] f_Hg the three volume flows and an initial concentration distribu-
clarif. tion only within the settler. In particular, it is important to
one Ly predict the behaviour of the large discontinuity (the sludge
4 blanket in waste water treatment) that appears under normal
— T operating conditions. We also emphasize that the boundary
thickening zone concentrations at the top and bottom of the settler and just
14 above and below the feed inlet are parts of the solution and
cannot be prescribed.

Under the ideal physical assumptions described above
and the Kynch assumption, the entire clarifier—thickener
Ip unit can be described completely by a single partial dif-
ferential equation with point source and discontinuous flux

clarif. s A- =, ‘

zone

thickening zone

compaction
zone

Qu uu
’ function; see [17,19]. This type of equation has the advan-
Fig. 1. Two ideal clarifier—thickener units. The indices areefluent, tage that it is possible to construct solutions by the method
f=feed and e=underflow. of characteristics, at least for piecewise constant initial data

and a constant cross-sectional area. The disadvantage is
that non-uniqueness of solution occurs due to the formation

has attracted much attention. As shown in [1,3,4,14] sedi- of discontinuities. In order to resolve this mathematical
mentation with compression can be modelled with a single problem of non-uniqueness so called entropy conditions
partial differential equation including a non-linear diffusion must be introduced. They relate fluxes and concentrations
term, and can thus be seen as a direct extension of the Kynchat discontinuities.
assumption. For example, within the clarification or the thickening

At the bottom of the settler the concentration increases zone, the entropy condition by Oleinik [27,28] should be
with depth as a result of, among other things, compressionused. It can be written as an inequality involving the same
and a converging cross-sectional area. In this paper it isflux function on both sides of the discontinuity. It can be
demonstrated what impact a converging cross-sectional areanotivated (physically and mathematically) by introducing a
has on the increase in concentration at the bottom for incom-small amount of diffusion, which is not included in the ide-
pressible suspensions (a consequence of Kynch’s assumpalized assumption by Kynch. This is called a viscous profile
tion). The results agree with those obtained by Shannon andanalysis, see e.g. Smoller [32]. The outcome is that unstable
Tory [31], who calculated the exact steady-state profiles for discontinuities are rejected and for each allowed disconti-
a settler with a conical bottom region as in Fig. 1(right). For nuity the jump condition determines uniquely the speed of
a flat bottom there is a jump between the concentration atthe discontinuity, which is a function of the concentration
the bottom inside the settler and the concentration in the out-values on each side of it.
let pipe. We emphasize that this refers to a one-dimensional The conservation of mass at the top, bottom and inlet
ideal model and is a consequence of the conservation ofof the settler yields jump conditions that involve different
mass and the assumption that there is sedimentation insidélux functions on either side of these three discontinuities,
the settler but not in the outlet pipe. Early work by Com- which all have the speed zero by the physical configuration.
ings et al. [12,13] and recent work by Farrow et al. [23] The six boundary concentrations on either side of these dis-
show that jumps do occur at the outlet. In reality mechanical continuities are not uniquely determined by the three jump
rake action and flows in more than one dimension influence equations. To pick out a unique solution a generalized en-
the concentrations, especially in the case of a flat bottom ortropy condition, conditior, is introduced by the author in
one with a low slope. With a cross-sectional area that de- [16]. These boundary values cannot be given beforehand,
creases with depth there is some possibility of maintaining but are a natural part of the solution. Because of the different
a constant concentration at a given height. If the slope is (non-linear) flux functions on either side of these discon-
great enough, solids approaching the slanted side will slidetinuities, the situation is much more complicated than at a
along the incline, displacing fluid in the interior. For a flat or  discontinuity within the clarification or thickening zone. The
low-sloped bottom rakes are normally used to draw solids boundary concentrations may be discontinuous functions of
to the outlet. If no rakes are used, a natural cone (at the an-time, creating discontinuities that move into the clarification
gle of repose) of solids builds up around the outlet. Only the or thickening zone.
solids in this inner cone move through the system. Hence, The investigation of the dynamic and steady-state be-
the settler works as if it had a decreasing cross-sectionalhaviour of the entire settler (with constant or varying
area with greater slopes. cross-sectional area) by means of solutions of partial differ-

The aim of the modelling of the entire clarifier—thickener ential equations has been done by Chancelier et al. [10] and
unit is to predict the two outlet concentrations and the con- the authorin [17,19]. In the case of a constant cross-sectional
centration distribution within the vessel given any loading area a procedure of construction of solutions by means of
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the method of characteristics together with conditiors
presented in [17]. However, that paper contains technical
mathematical details that are not of interest for those who
are primarily interested in sedimentation and, furthermore,
the procedure of construction of solution was primarily
introduced in order to show existence of a solution.

One purpose of this article is to describe conditibwith
fewer technical details than in [17]. This will be done in con-
nection with the description of the concentration distribution
at the bottom of a settler with converging cross-sectional
area. Then it is exemplified how analytical solutions can be
constructed.

2. ldeal clarifier—thickener units and the conservation
law

Let u(x, r) denote the (unknown) concentration of solid
particles (mass per unit volume), wherés the time and
x is the depth from the feed inlet. Let(x) denote the

121

Fig. 2. The flux curvedy,, f and g. The dashed lines have the slopes
v=Qu/A;, and —Q¢/A, respectively. Note that the inflection poiakg
is the same for the three flux functions.

The conservation of mass can be written as the partial dif-
ferential equation (conservation law):

a ad

a_u (vsu) _ 1)
t dx

whereus is the velocity of the solids. If) denotes the liquid

0,

cross-sectional area. In this paper we shall investigate twoye|ocity, then the bulk velocity can be written:

ideal settler models shown in Fig. 1. The right settler model
has the cross-sectional area:

A, —-H<x<0
Ax) =1 A+, O<x<d
a(x), d=<x=<D,

wherea(x) satisfiesa(d) = A, anda’(x) < 0. We desig-
nate the region (intervald, D) the compaction zone (not

v=vs¢p +v(1—¢) =vs— (vs—v)(1—¢). (2)

Here, the last term is actually the batch settling velocity.
In batch sedimentatiom = 0 hence Eq. (2) yieldss =

(vs — V) (A — ¢) = vsery Which by Kynch’s assumption is
a function only ofu(= ps¢). Thus, Eqg. (2) can be written
vs(u) = vsetti(u) + v and the flux function of Eq. (1) can be
expressed as:

compression zone) because of, as we shall demonstrate, the (1) = vs(u)u = (vsetti(u) + v)u = fp(u) + vu.

concentration increase due to the decreasing cross-sectional

area. The left settler model is the limit of the right one as
d — D. The height of the clarification zone i for both
models, the depths of the thickening zonesrandd for

the left and right model, respectively. The directions of the
known volume flowsQs, Qe and Qy, (volume per unit time)

Eq. (1) can be written:

ou ;oo ou

which is a quasi-linear partial differential equation with the
property that a constant concentratiof propagates with

are shown in the figure. The known concentration of the feed the speedf’ (1) in anx-t coordinate plane; cf. Kynch [25].

inlet is denoted by; () and the unknown concentrations of
the outlets at the top and bottom are denoted:by) and
uy(t), respectively.

According to the constitutive assumption by Kynch [25]
the settling velocity of the solids due to gravity in a batch
settling column is a function of the local concentration only;
vsert(u). Note thatu = ¢ps, where¢ denotes the volume
fraction of solids angs their density. The batch settling flux
(mass per unit time and unit area) is denoted ) =
vsetti(#)u and is assumed to have the form shown in Fig. 2.
The maximum packing concentration is denoted:pyxand
the only inflection point byijns.

Consider the interior of the thickening zone with the con-
stant cross-sectional ares,. The bulk velocity is defined
as:

Qu
v=—,
Ay

These straight lines of constant concentration are called char-
acteristics. Two characteristics with different concentration
values carrying initial data from the-axis (atr = 0) may
intersect and then a discontinuity appears. The jump condi-
tion for a discontinuityx = x(¢) having the concentration
valuesu*~ andu** on the left and right side, respectively,
is:

J@h) — f)

! —
x(t) = uxt — yx—

and the entropy condition by Oleinik [27,28] is:
f@) = f@™) _ f@h) — fu)

u*t —yr—

o —u*"
for all « between*~ andu* ™.

(4)

This condition means that the graph ¢{u) lies above
(below) the chord joining the point&*~, f(u*~)) and
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Fig. 3. Left: flux functions ak=d=2 m (the uppermost curve}=D=4 m (the bottom-most curve) and at seven intermediate equidistaaities. Right:
the steady-state solution whépick=4 kg/(m? h) and the flux in the clarification zone is zero. The underflow concentratiog=inick/v=5.65 kg/n¥,
which is only negligibly higher than the bottom concentration, sia()/Q,~0.

@**, f@*t)) whenu*~ is less (greater) tham**. As for Qe U = go(u) Y < —H
the examples of this paper it is assumed that the reader is Ay
familiar with the concepts above and the method of charac- A_ folu) — g u=gw), —H<x<0
teristics, see e.g. [26,32].. o _ F(u, x)= 0<r<d

Assuming that the particles follow the liquid outside the fb(“) Tuu= f(“) =X =
settler, the mass per unit time entering isus (1) and leav- @ fou) +vu= fa(u, x), d <x <D
ing it is at the effluentDeue(r) and through the underflow u . D

vu= fylu X > .

pipe Quuy(t). Extend the functiom (x) continuously to the
whole x-axis by lettingA(x) = A(—H) for x < —H and (6)
A(x) = A(D) for x > D. Then the conservation of mass

) | where we have defined the flux functigin the clarification
for the entire settler can be written:

zone (see Fig. 2)f5 in the compaction zone (see Fig. 3) and
5 5 the outlet fluxese and f,,. These flux functions differ from
F” (A(x)u) + P (Fo(u, x)) = Qrus (1) (x), (5) those in [19], which were obtained by normalizing Ayx)

instead. This can only be done for functioAgx) that are

wheres(x) is the delta function and the flux function (mass continuous at = —H, 0, D because of the discontinuities

flux per unit time) is: of the flux functionFp(u, -) and the delta function in Eq. (5).
In the present paper we allow(x) to be discontinuous at
— Qu < _H x = 0). All fluxes are positive in the direction of theaxis.
A(x()ef;g(u) — Q. —H<x<0 Note also that the bulk velocity in the clarification zone is
O x> D. Since we are dealing with discontinuous weak solutfons
. u(x, r) of partial differential equations the boundary con-
Here, natural flux functions appear above and below the centrations:
settler. Analyses of the dynamic and steady-state behaviour,_ () = I|£n u(—e, 1), up(t) = |i£nou(g, 1),
&

of Eq. (5) have been presented by Chancelier et al. [8-10]

and by the author in [19]. Normalizing Eq. (5) by dividing 4, (r) = lim u(=H + ¢, 1), up@) =Ilimu(D — ¢, 1),
by AL = A(0+) gives: eN\0 eN\o

will also be discontinuous. In order to state formulae that

He g P ) =500, Gefine the following adcitional its at cach boundary:
with the source function (mass per unit time and unit area): # () = !i@ou,(t +e), ut()= li@OM+(I + ¢,

s(t) = Qrus (1) - Ay uf ) = mup(+e).  uP@)=lmup@+e).

and the flux functionF (u, x) = Fo(u, x)/A+. Forthe right "1 some technical regularity assumptions on piecewise smoothness and

settler model this is: monotonicity are supposed to be satisfied, see [17].
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These four boundary functions are continuous from the right The characteristics (in the-t plane) of this equation are

and we define this to hold fars (r) (hences(z)), too. The
unknown functionsue(r) and uy(t) will automatically be
continuous from the right by the definitions that will follow.
At the feed inlet,x = 0, the conservation law yields the
jump condition:

Orut (1) = A4 fo (ut (1)) + Quu™ (1) — (A— fo (u™ (1))
—Qeu” ) & fut®) =g W () +s@)

)
and at the outlets we get:
—Qete(t) = A— fiy (u (1)) — Qe (1) &
geue®) =g (u ) ®)
and
Quua(t) = AD) o (P (1)) + Qu(1)
pon = {2000 o) Ggmoae.  ©

3. Obtaining unique boundary concentrations

The three jump conditions (Egs. (7)—(9)) relate six bound-

not straight lines and the concentration values carried by
these are not constant. In consequence, characteristics cannot
easily be used to construct a solution without numerical
calculations, not even to obtain a steady-state solution. Let
Ay finick denote the steady-state flux (mass per time unit) in
the thickening zone (this is denoted éyick in [19]). Hence,
finick is the flux per unit area. The steady-state solutioa
us(x) of Eq. (10) satisfies:

falu, x) = afi—x) fo) +vu = finick- (11)
+

The following facts hold fors(x) in the case witl'(x) < 0
(and Qy > 0 (see [19)]):

us(x) is uniquely determined byinick-

If usis constant, then eithers = 0 (fihick = 0) Or us =
Umax (fthick = f(’/lmax))-

If us is not constant, then it is strictly increasing with
depth with at most one discontinuity.

We also mention that there is at most one discontinuity at
steady state in the whole interval<0x < D. For the spe-
cific value finick = f(um) the discontinuity can be located
anywhere in O< x < d since the cross-sectional area is con-
stant there. Heray)y is the concentration value of the local
minimum of f (see Fig. 3). Let;, denote the concentration
less thamuy satisfying f (um) = f(um)-

ary concentrations within and outside the settler. They are 3-1.1. Numerical values used in the figures

all parts of the solution of the problem of determining the
behaviour of an ideal clarifier—thickener unit. As in the case
of a discontinuity within the thickening zone — the jump
condition (Eq. (3)) is not sufficient to determine a unique
solution for given initial data — the jump conditions in

Egs. (7)-(9) do not determine the boundary concentrations

(hence the concentration distribution within the settler)
uniquely for given initial data and feed concentratigtiz).

A uniqueness condition that picks out the physically correct
boundary concentrations for rather general flux functions
(with many inflection points) was introduced in [16] and
called conditionI". This is a generalization of Oleinik's
entropy condition (Eq. (4)). It is motivated physically by a
conservative numerical method (Godunov [24]) and by anal-
ysis of viscous profiles and their stability; see [16,18,22].
In this section conditio™ will be motivated and explained
by starting with a physical/mathematical discussion about
the jump condition (Eq. (9)).

3.1. Concentrations and fluxes in the compaction zone at
steady state

The conservation law for the compaction zone of the right
model of Fig. 1, i.e. the interval < x < D is:

a(x) du
Ay

0
+_8 (fa(u,x)) =0, d<x<D.
X

P (10)

In order to show graphs of numerical calculations of so-
lutions the following numerical values are used throughout
the paper:

H=1m

d =2 m (except in Fig. 19)
D=4m

A+ = 7T302 m2

A_=A, — 722 m?
uinfl = 4.15 kg/n?
Umax = 10 kg/rﬁ3

um = 0.80 kg/n?
up = 7.50 kg/m?
Qu = 2000 n¥/h

f(unm) = 6.25 1 kg/(nth)
Qe = 2500n¥/h (from Section 3.3 on)
Qs = 4500n%/h (from Section 3.3 on)

The feed concentratiom will have different values in the
examples. For the compaction zone of the right settler model

we have chosea(x) = 7(30—14.75(x —2)2) m?,2 < x <

4 hence A(2) = A, andA(4) = 70.52 m2.
In Fig. 3 fa(u, x) is plotted as a function aof for dif-

ferent values of the depth. We shall now investigate the

steady-state solution for different values fafick. Note that

this is the flux at every point in the intervald < x < D.

For low values offfinick there is a unique intersection with
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the flux functionf (1), hence the concentration in the thick-
ening zoneus(d) < um (see Fig. 3). We assume that the
effluent flow Qe is sufficiently low so that the concentra-
tion, and the flux, in the clarification zone is zero. The figure
shows that for every givemg € [d, D] there is a unique
intersection between the flux curv@(u, xo) and the hor-
izontal line with the flux valuefinick. This intersection de-
fines uniquely the concentration= us(xp) as the solution
of fa(u, x0) = fmick- In this way, we can clearly see that the
concentration is increasing with depth, following the family
of flux curvesfa(-, x) with x as the parameter.

If a(D) is close to zero, theyiy(u, D) =~ vuwhich means

that the sedimentation becomes negligible (the relative ve-

locity between liquid and solids is zero). Note that the jump
condition (Eq. (9)) (for the right settler model) implies:

a(D)

u

ug=up + Jo(up).
For an ideal model we may le{ D) = 0 which implies that
fa(u, D) = vu and, henceyy = up.

Next we consider a case with a slightly higher flticx =
5.63 kg/n?) and still us(2) < um (see Fig. 4). As in the
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val (2, 4) but the discontinuity is arbitrarily located in
[0, 2] (see Figs. 5 and 6). Note that(2 + 0) = um and
u's(2+¢) — oo ase — 0+.

It should now be clear that fais(2) < up the largest
finick the thickening zone can handle f§up) = f(um) =
6.25 kg/(n? h). A value of finick abovef (um) (us(2) < um)
is not possible in steady state, because there is no flux curve
fa(-, x) above the minimum point(unm, f(um)) for anyx.
The only possibility to reach the outlet flug,(v) = vu =~
fa(u, D) is to make a jump from a lower concentration to
a higher with a chord above the flux curve and this violates
the entropy condition (Eq. (4)onsequently, in the region
(0, d] there is no concentration in the intervaly, uy) at
any steady-state situation.

If us(d) € [um, umax then, necessarily, the steady-state
flux in the thickening zon€finick € [f (um), f(Umax]- The
only possibility for a discontinuity is at the feed level= 0
(see Fig. 7(right)).

3.1.2. When does a discontinuity appear in the compaction
zone?
We have seen that for low values fifick the steady-state

previous case there is a unique intersection between eacf$olution in(d, D) is continuously increasing, and for larger

flux curve fa(-, x) for every fixedx e [2, 2.5) and the
horizontal line with the flux valuginick. At x = 2.5 m there
are two intersections. The unique solution makes a jump
from the concentrations(2.5—0) = 1.62 tous(2.5+0) =
6.15 and then, fox € (2.5, 4] increases continuously again.
The discontinuity satisfies both the jump condition (Eqg. (3))
and the entropy condition (Eq. (4)) (the graphfafu, 2.5)
lies above the chord), which both hold for Eqg. (10) since
a(x) is a continuous function. Hence, this is the unique
steady-state solution for the given flyiick (if any other
concentration distribution is used as initial data, for example,
obtained by jumping between the flux curves in any other
order, then Eg. (4) will be violated and Eq. (10) will produce
a non-stationary solution).

In the boundary caséinick = f(um) = f(um) the
steady-state solution is uniquely determined in the inter-

10

fo(u,2) = f(u)
o %
f(uM) && 7 %
Senick :
2 /
= i
% 2 4 - T8 10
Um Us(2.5—) us(2.54) uy uy

values there is a discontinuity, which location is higher
(lower x values) the largefinick is. The discontinuity exists
when fa(-, x) has a local minimum point, which is the case
as long as the slope of the flux curve is negative;at. If
a(x) is strictly decreasing angfé(uinﬂ) < 0 it follows that
the slope at the inflection point:

0fa a(x)

E(uinfl, x) = A_+

fiuinf) + v,

as a function ok is (continuously) increasing from negative
values to positive (assuming(D) ~ 0), which is clearly
seen in the figures. Hence, there is a unique= xq for
which this slope is zero:

a(xo)
Fwint) +v =0.

Ay

10

us ()

8 /

4

2

-(?I. 0 1 2 3 4

T

Fig. 4. Left: the third flux function from above ig(u, 2.5 m); finick=5.63 kg/(n? h). Right: the steady-state solution with a sludge blanket=2.5 m
(the flux is zero in the clarification zone). The underflow concentratiamisfinick/v=7.96 kg/n¥.
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10 ; .
fa(u,2) = f(u) 10
us(z)
il /\ 8 ]
Fenick / i
4 1 4
2% 1 2}
o . l .
0 2 4 6 8 10 9 0 1 2 3 7
Um UM Uy T

Fig. 5. Left: flux functions andick=f(um)=Ff(um)=6.25 kg/(n? h). Right: a steady-state solution with a sludge blanket=s2 m (the flux is zero in
the clarification zone). Note thak(2—0)=u,=0.80 kg/n? and us(2+0)=uy=7.50 kg/n?. The underflow concentration ig,=finick/v=8.83 kg/n?.

10 10
ug () S s(z)
8 — ug(T

/ 8

t

=2}
(=2

[
()

1)
-1 0 1 2 3 4 3 0 1 2 3 4
x x

Fig. 6. Two steady-state solutions wiffyck=f(um)=f(um)=6.25 kg/(nt h).

xo is uniquely determined by this equation and it can be 0 < finick < 5.05 or fiick > f(um) = 6.25 there is no
used to write the corresponding flux value as: discontinuity in the compaction zone and foB5 < finick <
f(um) = 6.25 there is one.

Sfa(ttingl, x0) = %XO) So(inft) + vUinf
+

( ‘ Jo(uinft) >
=v\Uinfl — (57—~ )

ouinl) So far we have seen that for the right settler of Fig. 1
which is independent af(xp). With the numerical data used the only possibility for the concentration at = d in a
in the figures, this flux value is.85 kg/(n? h). Hence, for steady-state situation is to lie in,[@y] or [um, umax and

3.2. Dynamic boundary concentrations at the bottom

10 . . .
fa(u,2) = f(u) 10
us(x)
8
6
4
2
% 2 4 R 0
' 1 0 1 2 3 4
Um upm Us(2) Uy x

Fig. 7. A steady-state solution witfiicx=6.50 kg/(n? h) (the flux is zero in the clarification zonelis(x)=8.80 kg/n? for 0<x<2. The underflow
concentration isly=finick/v=9.19 kg/n¥.



126

S. Diehl/Chemical Engineering Journal 80 (2000) 119-133

that the underflow concentration is determined as the inter- will not be kept as a boundary concentration any open time

section of the constant flugnick within the regiord < x <
D and the straight line with slope

The reasoning above holds for ady< D. In the limit
cased — D, corresponding to the left settler model, the
only possible boundary concentration at the bottom is still
in [0, um] of [um, umax]- In @ dynamic situation this is still
true, since the flux is continuous ovee= D by the conser-

interval. The unique solution is constructed in the following
way. Given the flux functiory’ above the boundary = D
define the auxiliary function:

O<u<ug
uo < U =< Umax

maXxe[u,uo]f(a)a

minae[uo,u]f(a)’ (15)

fu; uo)={

which is a non-increasing function (see Fig. 8). In a sym-

vation of mass. Hence, we have motivated that the boundarymetrical way we define an auxiliary non-decreasing func-

concentration at the bottom satisfies:

MD(I) € [0, um] U[um, umax-

tion given the flux function below the boundary & D).
Since in the present exampl@ is already increasing, the
auxiliary functlonfu fu independently of any initial data

The conservation law used in a neighbourhood of the bottom for x > D which, therefore, need not be give@ondition

x = D (left settler model) can be written:
ou  af (u)

E ox =0, x<D (12)
f@P@®) = fuu@), x=D (13)
8_” dfulu) —0, - D (14)
ot 0x

whereu(t) is the boundary concentration below= D.
The jump condition (Eq. (13)) must be supplemented by
an entropy condition, which should be a generalization
of Eq. (4) since two different flux functions are involved.
Furthermore, the two boundary concentratiord(r) and
uy(t) = limg_ oy u(D + 0, t 4+ ¢) should be determined
given initial data only forx < D. The generalized entropy
condition given in [16] (condition") and its use in the
construction of a solution in a neighbourhoodxcf D for
all possible initial data is described in Section 7.2 of [17].
Here we give the following example.

Assume that the initial datum is the constagt= 1.5

I'states that the flux at the boundary & D) is the flux
valuey of the intersection of and f,, and that the bound-
ary concentrations satisfy

FWP ) =y = fuuu®).

The flux value at the boundary js= f(um) = 6.2 (see
Fig. 8(left)). The boundary value at the bottom within the
settler isu?(tr) = um = 7.5. The unique solution, which
is constructed by the method of characteristics, is shown in
Fig. 8(right). From the bottom there is a rising discontinuity,
below which the concentration is continuously increasing
fromu = 6.30 toum = 7.50. The solution in this region is
u(x, 1) = (f)"1(E=2) (f’ is increasing to the right of the
inflection point, hence invertible for these concentrations).
ug is defined as the concentration greater tharat which
the tangent of the graph gfpasses througtug, f (ug)) (for
a strict definition see Ballou [2]). Because of the increasing
function £, the characteristics im > D are always directed
downwards (in the positive-direction). Hence, initial data
need not be given far > D. The boundary value(¢) is

(see Fig. 8) above the bottom of the thickening zone, i.e., let uniquely determined by Eq. (13), which gives:

u(x, 0) = ug for x < D in the problem (Eqgs. (12)—(14)).
Note that we do not specify any initial data for> D. As
we have motivated above the concentratiQne (um, um)

10

D D
uu(t)=M=uD(z)+fb( ) — 8.83kg/m°.
Ug */
Ug
U
b Uy S t
T \

Fig. 8. The use of conditiol at the bottom of the left settler model. Left: flux functions and auxiliary functions (thick dashed). Right: solution shown

by characteristics (thin lines) and discontinuities (thick lines).
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g(u)

Ue
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)
T

-H

Fig. 9. Left: flux functions, auxiliary functions (thick dashed) and the concentratiga$.73 kg/n?, u.=2.56 kg/n¥. Right: the solution satisfying
conditionT". Note that the slopes of the characteristics &g/ ) ge’(ue)=—Qe/A_ (for x<—H), which is the bulk velocity, andA/A_) ge'(u1)=—Qe/A_

(for x>—H) because of the definition of the flux functions (Eq. (6)).

The example above holds qualitatively for any €
(um, unm) with the addition that ifiug € [uinfi, um) thenug
is replaced byg and the previously rising discontinuity is
a line of continuity instead.

If up € [0, um] U [um, umax] then the bottom concentra-
tion is the constanig and the underflow concentration is
uy = f(ug)/v. We omit the details of this and the cases in
which the concentration is not constant above the bottom
and refer to [17].

3.3. Boundary concentrations at the top

The handling of the concentrations at the effluent is anal-

zone settle. In fact, if the gravity settling force downwards

is balanced by the liquid's drag force upwards, then it is

possible to have a non-zero concentration of particles at
the very top of the clarification zone and still have a zero

effluent concentration.

3.4. Boundary concentrations at the feed level

The most complicated situations occur at the feed level.
The jump condition (Eg. (7)) is not sufficient to determine
the two boundary concentratioms  above and:™ below
the feed level. Given initial data at = 0 with u_ and
uy the limit concentration above and below= 0 respec-

ogous to the way the boundary concentrations at the underjyely, form the auxiliary non-increasing functigiu; u_),

flow were treated above. The conservation law for the region
x < —His:

Qe ou

which is a linear convection equation that carries away the
boundary concentrationg(t) = lim, o+ u(—H —0, t+¢)
from the boundaryy = —H (to lower x values in thex-t
plane) with the bulk spee@e/A_. The construction of a
solution involves the auxiliary functionge = ge and g,

cf. [17]. For example, assume that a discontinuity with the
constant concentration; = 5.72 below has reached the
top of the settler at = 0, that is, the initial concentration is
u1 in the (upper part of the) clarification zone. The unique
solution thereafter is shown in Fig. 9. The boundary con-
centration at the top within the settler ig’ () = uy and
the effluent concentration is given by the jump condition
(Eq. (8)), which gives:

A_ fo (ufl (1))
Qe '

Henceue is less tham ! (or equal ifu” = 0 orumay). This
is due to the fact that the particles within the clarification

ue(t) = u () — (16)

cf. (Eq. (15)), and the non-decreasing function:

O<uc<uy
M+<M§Mmax.

minae(u,u+)f(a)»

S uy) = { My y,u) f (@),

ConditionT" states that, for every fixedthe flux atx = 0

is the flux valuey (¢) of the intersection of (-; u_(t)) +
s(t) and f(-; u4(t)) and that the boundary concentrations
satisfy:

Fut@) =y@)=gu () +s).

Note that the latter equation may be satisfied by several
candidates of;™ and u~, however, only one pair can be
used as limit concentrations of a solution. This is described
(and proved) generally in [17] and in the next section we
show the procedure of construction by examples.

4. Construction of global solutions

In the two following examples we consider the left set-
tler model of Fig. 1 filled with only liquid, that is, with zero
concentration as the initial data. The settler is fed with two
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Fig. 10. Example 1. The solution in the case a settler is filled with solids at a constant rate. Thin lines are characteristics and thick linesiangidscont
except forx; andxz, which are lines of continuity.

different constant concentrations, which both result in over- implications of Fig. 11 hold for every € (0, t4). The solu-
flow situations. To construct solutions in a neighbourhood of tion is therefore zero in the clarification zone for( < 4.

the feed inlet we conclude from the jump condition (Eq. (7))  Between the straight lines, = f'(0)r andx, = f/(ug)t

(and conditiorT") that it is convenient to draw the graphs of there is an expansion wave consisting of all concentrations
f(wandg(u)+s (and their auxiliary functions) in the same between zero (along; andug (alongxz). The expansion

figure. We also remark that in the case of a continuégs) wave can be expressed @&, 1) = (f')~1(x/1) (since f’
at x = 0 the feed concentration is the intersection of these is decreasing to the left of the inflection point, it is invertible
graphs. In the present cage, ~ A_ andu; is approx- for these concentrations).
imately the intersection. This is because the concentration At the bottom the concentration increases continuously
valueu'of an intersection satisfies(u’) = g(u') + s and: from zero after the time point see Fig. 12(left), and so does
A uy(t). Let ro denote the time point for whichp (f2) = um
+5 Ay i i D ion i
Uf = —— = — (f(u )—g(u )) andu”(t2) = um. Fort > to the boundary concentration is
QOr QOr up(t) = uP(t) = um. Att = 1, a discontinuityrz emanates
_ A+ <fb(ui) 4 Qu i A fol) + &Mz> from the bottom with the initial velocity zero (there is a
0 A Ay jump between:,, anduy and the final velocity:
i AT A i
=+ =5 folu). iy = 18 = T w0

Lt —Uu
where we have used tha@, + Qe = Qf. The highest 0

value of the last term for the simulations in this paper is which is also the slope of the discontinuity. During s <
% maX,_,_,.. fou) = 0.02 kg/n?, henceus ~ u'. t < 3 the concentration aboves increases fronu, to ug
and the concentration below decreases frgin(at the bot-
Example 1. A settler with the initial concentration zero is  tom) toug, cf. Fig. 12(right). The solution in the thickening
fed with a constant concentration. The numerical values are: zone to the right ofcz and x4 is defined by the character-

us = 5.52 kg/n?
s = 8.79 kg/(n? h)
uo = 1.50 kg/n?
ufy = 6.30 kg/n?
u1 = 5.73 kg/n?
uy = 8.83kg/m?

ue(00) = 2.87 kg/n?

and the solution is shown in Fig. 10 in terms of characteris-
tics and discontinuities.

The graphs off («) and g(u) + s are shown in Fig. 11
together with those of (x; 0) andg(«; 0)+s. The intersec-
tion of the graphs of these two auxiliary functions occurs at :
the concentrationg and the flux values = s. The (unique) % 2 4 6 8 10
boundary concentrations are (r) = up andu=(t) = 0 Uo Ut
for 7 > 0 until any wave of another concentration reaches Fig. 11. Example 1. The situation at the feed levelt-a0. The initial

x =0, Wthh occurs at = t4. The reason for this is that  poundary values are_(0)=u. (0)=0. Note thaty is (approximately) the
f( ; ug) = f( ; 0) holds, which implies that the graphs and intersection of the two graphs.
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4f 4}
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0 2 4 : 0 % 2 4 6, 8 10
up(t) Um uu(t) um Um Ug Uy Um

Fig. 12. Example 1. Left: the situation at the bottom at a time pti(t, to). The small arrows show the directions of movement with increasing time.
Right: the concentrations appearing abogeare [um, Ug] and below are dio*, um].

istics that emanate tangentially from (which is called a holds, except for the fact that the boundary concentration at
contact discontinuity). the top is now increasing slightly abowe ast — oo.

At t = 14 the discontinuityx,4 reaches the feed level and
the situation there changes. The graphsfof; ug) and
g(u; 0) 4+ s are shown in Fig. 13. The intersection of these
two graphs occurs at the flux valygrs) = f(up) and the
concentration:; which is the solution of:

Example 2. In this example the initial data and values of
the volume flows are the same as in Example 1 except for a
higher feed concentration. The numerical values are:

g(u1) +s = f(up). us = 6.91 kg/n?
s = 11 kg/(n? h)

The new boundary concentration in the clarification zone 4 = 2.44 kg/n?

is u~(t4) = uy yielding characteristics emanating from the ul = 5.27 kg/n®
feed level upwards. The boundary concentration below the ,; = 531 kg/n?

feed level is continuous aj: u™(t4) = u,(t4) = ug. After up = 6.43kg/n?
this time pointu (¢) increases asymptotically up tgyat ue(ts) = 1.45 kg/m?
t = oo which implies that the concentratian. (z) is slightly ue(00) = 5.38 kg/m?
increasing up to its limit valuer; > u; determined by uy = 8.83 kg/n?

the intersection off (um) (the flux value of the plateau of

fu: um) and g(u) + s. We leave the details of forming  anq the solution is shown in Fig. 14. The initial situation at

fCup () andg(; u_(1)) + s etc. to the reader. the feed level is shown in Fig. 15. The intersection between
At ¢ = 15 the discontinuityrs reaches the top of the settler  he two dashed graphs occurs at the flux vatue f (uo)

resulting in an overflow and the situation shown in Fig. 9 whereug is the concentration of the local maximum point

of f. Note that in this example > f(ug) which implies

16 . . . . that solids will be transported into the clarification zone

immediately. The (unique) boundary concentrations at the

feed level ara:™(t) = ug andu—(z) = uq for 0 < t < 4.

141

12-

T4 T,
U2
N

UM

Uo up Up Fig. 14. Example 2. The solution in the case of a higher feed concentration
than in Example 1. Thin lines are characteristics and thick lines are
Fig. 13. Example 1. The situation at the feed levet=aty. discontinuities except foxi, x4 and xs, which are lines of continuity.
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Fig. 15. Example 2. The situation at the feed levet-a0.

In the clarification zone a shock wawe is immediately
formed having the velocity:

gu1) — g(0) _ gu1) -

0
u1—0 ui

xp(1) =

according to the jump condition. Hence, it reaches the
effluent level at the time point:

. Huy

® T e

In the thickening zone there is an expansion wave similar
to the one in Example 1, but this one is spread up to the feed
level since the characteristic with concentratignhas zero
slope. The solution in the thickening zone on the right of
x3 is defined by the characteristics that emanate tangentially
from x3. The concentration on the right ®f decreases with
height fromuy (at the bottom) tacg at (x, 1) = (0, 24).

The discontinuitycs reaches the feed level at The new
boundary concentration in the clarification zongz4) = u»
is defined by the intersection of the graphs shown in Fig. 16,
hence it can be obtained as the solution of:

fwg) = guz) +s.

16

14}

12

10

10
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The situation at the feed level after= 74 is qualita-
tively the same as in Example 1. In the clarification zone
there is a small expansion wave betwegnand x5 sepa-
rating the concentrations;andus. Since, in this example,
u1 > uinfl, X4 is a line of continuity. Ifuy < ujnf, thenxy
would be a discontinuity instead with the concentratign
(defined by drawing a tangent as shown previously) on the
right.

The situation at the bottom is the same as in Example 1,
and the effluent concentration is calculated from Eq. (16);
cf. the numerical solution in Fig. 20.

5. Numerical solutions
The numerical method described in [19,20] is used. It is

based on Godunov’s [24] method, in which the concentration
related to each grid point along tlxeaxis at a certain time

t-axis

6
time (h)
Effluent concentration
10 T T
sk A
6k i . e d
4 e S —
2r . 2 i f ~
0 2 4 6 8 10 12
time (h)
Underflow concentration
10 . y -
8k : i
6 . 4
4+ L 4
2+ i sesasssnagrassens SRRt ST -
ok i ; i i ;
0 2 4 6 8 10 12
time (h)

Fig. 17. Example 1. Numerical solution corresponding to the analytical

Fig. 16. Example 2. The situation at the feed levet=aty.

one of Fig. 10.
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point is the average of an analytical solution originating
from piecewise constant initial data at the preceding time
point. Itis a conservative method, which means that although
discontinuities are smoothed (by numerical diffusion), they

are located correctly, that is, they move with the correct
speed.

Example 1, continued. Fig. 17 shows the numerical solu-
tion when the left settler model is filled with solids. With
the same initial data and feed concentration Fig. 18 shows
the numerical solution for the right settler model. Since the
volume of this settler is less than the other one, it cannot
keep as much mass and is thus filled up faster. In order to

concentration u(x,t)

n
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t-axis 0 -1 — axi
investigate the limit casé — D numerically we present Contours of u(x.) e
in Fig. 19 the numerical solutions for different valuesdof ' ' 7
We should mention that although numerical simulations are °
. . . Eq
possible for the right settler model, a drawback is that the =
82
3
. . ]
0 2 4 8 10 12

6
time (h)

“ »‘“‘\:ﬁ“@i“h\\“‘
“““ \\\\\\\\\\\\\\ 4 il

0—1

t-axis x—axis
Contours of u(x,t) t-axis 0 - X-axis

|7 J ) Contours of u(x,t)

0 : .
€4
5

s /Kr:

0 2 p 6 8 10 12

time (h) 6
Effluent concentration time (h)

10 " . . . . .

8r : : 1 Fig. 19. Numerical solutions in the case of a compaction zone etB
6 B S ] m (upper) and 3.8 m (lower).

0 2 4 tiilime(h) 8 10 12 upper bound on the time step length tends to zero as the

Underflow concentration cross-sectional areg D) tends to zero; cf. [17]. This is be-

10 ; ' cause of the bulk velocity),/a(D) at the bottom, which
8 R A carry information very fast ag(D) is small.

ol B |
4
2 Example 2, continued. The numerical solution is shown in
% 2 7 6 8 10 12 Fig. 20 for the left settler model. Note that the high feed

time (h)

concentration implies in this case that solids are building
up immediately in the clarification zone. This is an example
showing non-monotone concentration distributions during a

Fig. 18. Numerical solution of Example 1 in the case of a compaction
zone betweenx=d=2 and 4 m.
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concentration u(x,t)

t-axis
x-axis

time (h)
Effluent concentration

time (h)

Underflow concentration

time (h)

Fig. 20. Example 2. Numerical solution corresponding to the analytical one
of Fig. 14. Note the different direction from which the three-dimensional
graph is shown.
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underflow concentration under normal operating conditions
has been discussed in the literature and different conditions
have been suggested to hold in dynamical situations. In this
paper it has been shown that this discontinuity is a natural
consequence of the ideal model by considering a model
with a converging cross-sectional area at the bottom (com-
paction zone). Concurrently, the increase of concentration
in the compaction zone only due to the gravity settling (no
compression) has been demonstrated, which is in agreement
with the earlier results by Shannon and Tory [31]. In real-
ity an increase in concentration at the bottom is observed.
However, there are additional phenomena that affect the
concentration distribution, e.g. rake action and flows in two
or three dimensions.

The generalized entropy condition introduced in [16]
resolves the problems of determining the concentrations at
the inlet and the outlets (of an ideal model) at any loading
condition. The generalized entropy condition is in this pa-
per illustrated by considering a settler model with constant
cross-sectional area below the feed level as a limit model
of another one with a converging cross-sectional area at the
bottom. Mathematically, this means that a discontinuity in
flux functions (betweerf and f,) has been studied by con-
sidering a continuous transition between them. This type of
smoothing procedure has been performed in a more gen-
eral and rigorous way for general flux functions in [18,22],
where the addition of a small amount of diffusion is treated
simultaneously. The use of this condition in the construc-
tion of solution for the entire settler has been demonstrated
in two examples accompanied by numerical solutions.
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solution is non-decreasing with depth, which is generally
true for a settler with non-increasing cross-sectional area.

6. Conclusions

The restriction to one dimension in the modelling of con-

tinuous sedimentation means that several idealized assump-
tions are made. Usually the cross-sectional area is assumed

to be constant all the way down to the bottom. This is ad-
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